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GORENSTEIN PROJECTIVE DIMENSION RELATIVE
TO A SEMIDUALIZING BIMODULE

Zengfeng Liu, Zhaoyong Huang, and Aimin Xu
Department of Mathematics, Nanjing University, Nanjing,
Jiangsu Province, China

Let S and R be rings and SCR a semidualizing bimodule. We investigate the relation
between the GC -syzygy with the C-syzygy of a module as well as the relation
between the GC -projective resolution and the projective resolution of a module. As a
consequence, we get that if

� � · · · → G1 → G0 → G0 → G1 → · · ·

is an exact sequence of S-modules with all Gi�G
i GC -projective, such that HomS��� T�

is still exact for any module T which is isomorphic to a direct summand of direct
sums of copies of SC, then Im�G0 → G0� is also GC -projective. We obtain a criterion
for computing the GC -projective dimension of modules. When SCR is a faithfully
semidualizing bimodule, we study the Foxby equivalence between the subclasses of the
Auslander class and that of the Bass class with respect to C.

Key Words: Auslander class; Bass class; Foxby equivalence; (faithfully) semidualizing bimodules;
GC -projective dimension; GC -projective modules.

2010 Mathematics Subject Classification: 18G25, 18G20.

1. INTRODUCTION

Auslander and Bridger introduced in [2] the G-dimension for finitely generated
modules over Noetherian rings. Then Enochs and Jenda introduced in [7] the
Gorenstein projective dimension for arbitrary modules over a general ring, which is
a generalization of the G-dimension. The homological properties of the Gorenstein
projective dimension and some generalized versions of such a dimension have
been studied by many authors, see [1, 3, 8–12, 14–17] and the literatures
listed in them. White introduced in [17] the GC-projective modules and gave a
functorial description of the GC-projective dimension of modules with respect to a
semidualizing module C over a commutative ring; and in particular, many classical
results about the Gorenstein projectivity of modules were generalized in [17]. Over a
commutative Noetherian ring, the GC-projective modules and the GC-projective
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2 LIU ET AL.

dimension were called C-Gorenstein projective modules and the C-Gorenstein
projective dimension in [11], respectively. Note that the noncommutative versions
of almost all the results in [17] also hold true. Based on these results, in this
article we further investigate the properties of the GC-projective modules and the
GC-projective dimension of modules over general rings.

This article is organized as follows.
In Section 2, we establish the relation between the GC-syzygy with the

C-syzygy of a module as well as the relation between the GC-projective resolution
and the projective resolution of a module. As a consequence, we get that an
iteration of the procedure used to define the GC-projective modules yields exactly
the GC-projective modules. Then we obtain a new equivalent characterization of
GC-projective modules, by which it yields that the GC-projective modules possess
the symmetry just as the Gorenstein projective modules do.

In Section 3, we get some properties of GC-projective dimension of modules.
In particular, as an application of the results obtained in Section 2, we get a criterion
for compute such a dimension. Let S�R be rings and SCR a semidualizing bimodule,
and let M be a left S-module and n ≥ 0. We prove that the GC-projective dimension
of M is at most n if and only if for every non-negative integer t such that 0 ≤ t ≤ n,
there exists an exact sequence 0 → Xn → · · · → X1 → X0 → M → 0 in Mod S such
that Xt is GC-projective and Xi is projective or isomorphic to a direct summand of a
direct sum of copies of SC for i �= t. Let SCR be a faithfully semidualizing bimodule
and n ≥ 0. We prove that if S (resp., R) is a n-Gorenstein ring, then idSC ≤ n (resp.,
idRopC ≤ n) if and only if every left S-module (resp., every right R-module) has
GC-projective dimension at most n.

In Section 4, we prove that if SCR a faithfully semidualizing bimodule, then for
any n ≥ 0, the class of left R-modules with Gorenstein projective dimension (resp.,
GC-injective dimension) at most n in the Auslander class �C�R� and the class of
left S-modules with GC-projective dimension (resp., Gorenstein injective dimension)
at most n in the Bass class �C�S� are equivalent under Foxby equivalence.

2. GC-PROJECTIVE MODULES

Throughout this article, S and R are associative with identity, and all modules
are unitary. We use Mod S (resp., ModRop) to denote the class of left S-modules
(resp., right R-modules).

At the beginning of this section, we recall some notions from [12].

Definition 2.1 ([12]). An �S� R�-bimodule C = SCR is called semidualizing if the
following conditions are satisfied:

(a1) SC admits a degreewise finite S-projective resolution;
(a2) CR admits a degreewise finite Rop-projective resolution;

(b1) The homothety map SSS
Sr−→ HomRop�C� C� is an isomorphism;

(b2) The homothety map RRR

rR−→ HomS�C� C� is an isomorphism;
(c1) ExtiS�C� C� = 0 for any i ≥ 1;
(c2) ExtiRop �C� C� = 0 for any i ≥ 1.

From now on, SCR is a semidualizing bimodule.
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GORENSTEIN PROJECTIVE DIMENSION 3

Definition 2.2 ([12]). A module in Mod S is called C-projective if it has the
form C ⊗R P for some projective module P ∈ ModR. A module in ModR is
called C-injective if it has the form HomS�C� I� for some injective module
I ∈ Mod S. Set

�C�S� = �C ⊗R P � RP is projective�� and

�C�R� = �HomS�C� I� � SI is injective��

Definition 2.3 ([12]). The Auslander class �C�R� with respect to C consists of all
module M ∈ ModR satisfying:

(A1) TorRi �C�M� = 0 for any i ≥ 1;
(A2) ExtiS�C� C ⊗R M� = 0 for any i ≥ 1; and
(A3) The natural evaluation homomorphism �M � M → HomS�C� C ⊗R M� is an

isomorphism (of R-modules).

The Bass class �C�S� with respect to C consists of all modules N ∈ Mod S
satisfying:

(B1) ExtiS�C� N� = 0 for any i ≥ 1;
(B2) TorRi �C�HomS�C�N�� = 0 for any i ≥ 1; and
(B3) The natural evaluation homomorphism 	N � C ⊗R HomS�C�N� → N is an

isomorphism (of S-modules).

Let M ∈ Mod S. We denote AddSM (resp., ProdSM) the subclass of Mod S
consisting of all modules isomorphic to direct summands of direct sums (resp., direct
products) of copies of M . The following result was proved in [9, Theorem 3.1]. We
give it a quick proof.

Proposition 2.4.

(1) �C�S� = AddSC.
(2) �C�R� = ProdRC

+, where C+ = HomS�C� E� with SE an injective cogenerator for
Mod S.

Proof. (1) It is clear that �C�S� ⊆ AddSC. Now we show AddSC ⊆ �C�S�.
For any M ∈ AddSC, there exists N ∈ Mod S such that M ⊕ N 
 C�J� for some
cardinal J . Note that �C�S� is closed under direct sums and direct summands
by [12, Proposition 4.2]. Since C 
 C ⊗R R ∈ �C�S� by [12, Lemma 5.1], both
C�J� and M are in �C�S�. Since HomS�C�M�⊕HomS�C�N� 
 HomS�C� C

�J�� 
 R�J�,
HomS�C�M� ∈ ModR is projective. Thus M ∈ �C�S� by [12, Lemma 5.1].

(2) Let I ∈ Mod S be injective. Then I is isomorphic to a direct summand
of EJ for some cardinal J . So HomS�C� I� is isomorphic to a direct summand
of HomS�C� E

J��
 �C+�J �, and HomS�C� I� ∈ ProdRC
+. Thus we have �C�R� ⊆

ProdRC
+.

In what follows, we show ProdRC
+ ⊆ �C�R�. For any X ∈ ProdRC

+, there
exists Y ∈ ModR such that X ⊕ Y 
 �C+�J for some cardinal J . Note that �C�R�
is closed under direct products and direct summands by [12, Proposition 4.2]. Since
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4 LIU ET AL.

C+ ∈ �C�R� by [12, Lemma 5.1], both �C+�J and X are in �C�R�. Since SE ∈ �C�S�
by [12, Lemma 4.1], �C ⊗R X�⊕ �C ⊗R Y� 
 C ⊗R �C+�J 
 EJ ∈ �C�S�. Thus C ⊗R

X ∈ Mod S is injective. So X ∈ �C�R� by [12, Lemma 5.1]. �

Let � be a subclass of Mod S. Recall that a sequence L in Mod S is
called HomS�−��� (resp., HomS���−�) exact if the sequence HomS�L� C

′� (resp.,
HomS�C

′�L)) is exact for any C ′ ∈ �. Note that �C�S� = AddSC and �C�R� =
ProdC+ by Proposition 2.4. The following notions were introduced by Holm
and Jørgensen in [11] and White in [17] for commutative rings. We give the
noncommutative versions of them.

Definition 2.5.

(1) A complete ��C-resolution is a HomS�−�AddSC� exact exact sequence:

X = · · · → P1 → P0 → C0 → C1 → · · · (2.1)

in Mod S with all Pi projective and Ci ∈ AddSC. A module M ∈ Mod S is called
GC-projective if there exists a complete ��C-resolution as in (2.1) with M 

Im�P0 → C0�. Set

��C�S� = the class of GC-projective modules in Mod S�

(2) A complete �C�-resolution is a HomR�ProdC
+�−� exact exact sequence:

Y = · · · → I1 → I0 → I0 → I1 → · · · (2.2)

in ModR with all Ii injective and Ii ∈ ProdRC
+. A module M ∈ ModR is called

GC-injective if there exists a complete �C�-resolution as in (2.2) with M 

Im�I0 → I0�. Set

��C�R� = the class of GC-injective modules in ModR�

It is trivial that in case SCR = SSS , the GC-projective modules and GC-injective
modules are just the usual Gorenstein projective modules and Gorenstein injective
modules, respectively.

Note

(1) In [17] the rings are commutative rings, but the noncommutative analogs of all the
results from 1.1 to 4.4 in it are also valid. So in the following, we will cite these
results directly in our setting.

(2) In what follows, we only deal with the GC-projectivity of modules. But it should be
pointed out that all of the obtained results have a GC-injective counterpart by using
completely dual arguments.

Lemma 2.6. Let M ∈ Mod S be GC-projective. Then there exist HomS�−�AddSC�
exact sequences

0 → M → G → N → 0
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GORENSTEIN PROJECTIVE DIMENSION 5

and

0 → K → P → M → 0

in Mod S with N�K GC-projective, G ∈ AddSC, and P projective.

Proof. By the definition of GC-projective modules and [17, Proposition 2.9]. �

For any M ∈ Mod S and n ≥ 1, we denote ExtnS�M�AddSC� =
�ExtnS�M�C ′� �C ′ ∈ AddSC�. The following result plays a crucial role in the rest of
this section.

Lemma 2.7. Let

0 → A → G1

f−→ G0 → M → 0 (2.3)

be an exact sequence in Mod S with G0, G1 GC-projective. Then:

(1) We have the following exact sequences

0 → A → C1 → G → M → 0 (2.4)

and

0 → A → H → P → M → 0 (2.5)

with C1 ∈ AddSC, P projective, and G�H GC-projective.
(2) If the exact sequence (2.3) is HomS�−�AddSC� exact, then so are (2.4) and (2.5).

Proof. (1) Since G1 is GC-projective, there exists an exact sequence 0 → G1 →
C1 → G′ → 0 with C1 ∈ AddSC and G′ GC-projective by Lemma 2.6. Then we have
the following pushout diagram:

Consider the following pushout diagram:
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6 LIU ET AL.

Since G0 and G′ are GC-projective, G is also GC-projective by [17, Theorem 2.8].
Connecting the middle rows in the above two diagrams, we get the first desired exact
sequence (2.4).

Since G0 is GC-projective, there exists an exact sequence 0 → G′′ → P →
G0 → 0 with P projective and G′′ GC-projective by Lemma 2.6. Then we have the
following pullback diagram:

Consider the following pullback diagram:
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GORENSTEIN PROJECTIVE DIMENSION 7

Since G1 and G′′ are GC-projective, H is also GC-projective by [17, Theorem 2.8].
Connecting the middle rows in the above two diagrams, we get the second desired
exact sequence (2.5).

(2) Note that ExtiS�L�AddSC� = 0 for any GC-projective module L ∈ Mod S
and i ≥ 1 by [17, Proposition 2.2]. If the exact sequence (2.3) is HomS�−�AddSC�
exact, then Ext1S�M�AddSC� = 0 = Ext2S�M�AddSC� and Ext1S�Im f�AddSC� = 0.
So in the proof of (1), Ext1S�B�AddSC� = 0 and Ext1S�N�AddSC� = 0. Thus the exact
sequences (2.4) and (2.5) are HomS�−�AddSC� exact. �

The following result establishes the relation between the GC-syzygy with the
C-syzygy of a module as well as the relation between the GC-projective resolution
and the projective resolution of a module.

Lemma 2.8 (cf. [17, Theorem 3.6] and Proposition 3.5 below). Let n ≥ 1 and

0 → A → Gn−1 → · · · → G1 → G0 → M → 0 (2.6)

be an exact sequence in Mod S with all Gi GC-projective. Then we have the following:

(1) There exist exact sequences:

0 → A → Cn−1 → · · · → C1 → C0 → N → 0 (2.7)

and

0 → M → N → G → 0

in Mod S with all Ci ∈ AddSC and G GC-projective.
(2) There exist exact sequences

0 → B → Pn−1 → · · · → P1 → P0 → M → 0 (2.8)

and

0 → H → B → A → 0

in Mod S with all Pi projective and H GC-projective.
(3) If the exact sequence (2.6) is HomS�−�AddSC� exact, then so are (2.7) and (2.8).

Proof. We proceed by induction on n.

(1) When n = 1, we have an exact sequence 0 → A → G0 → M → 0 in
Mod S. Since we have a HomS�−�AddSC� exact exact sequence 0 → G0 → C0 →
G → 0 in Mod S with C0 ∈ AddSC and G GC-projective by Lemma 2.6, we have the
following pushout diagram:
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8 LIU ET AL.

The middle row and the last column in the above diagram are the desired two exact
sequences.

Now assume that n ≥ 2 and we have an exact sequence 0 → A →
Gn−1 → · · · → G1 → G0 → M → 0 in Mod S with all Gi GC-projective. Put K =
Coker�Gn−1 → Gn−2�. By Lemma 2.7, we get an exact sequence

0 → A → Cn−1 → G′
n−2 → K → 0 (2.9)

in Mod S with Cn−1 ∈ AddSC and G′
n−2 GC-projective. Put A

′ = Im�Cn−1 → G′
n−2�.

Then we get an exact sequence 0 → A′ → G′
n−2 → Gn−3 → · · · → G1 → G0 →

M → 0 in Mod S. So, by the induction hypothesis, we get the assertion.

(2) When n = 1, we have an exact sequence 0 → A → G0 → M → 0 in
Mod S. Since we have a HomS�−�AddSC� exact exact sequence 0 → H → P0 →
G0 → 0 in Mod S with P0 projective and H GC-projective by Lemma 2.6, then we
have the following pullback diagram:
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GORENSTEIN PROJECTIVE DIMENSION 9

The middle row and the first column in the above diagram are the desired two exact
sequences.

Now assume that n ≥ 2 and we have an exact sequence 0 → A → Gn−1 →
· · · → G1 → G0 → M → 0 in Mod S with all Gi GC-projective. Put K = Ker�G1 →
G0�. By Lemma 2.7, we get an exact sequence

0 → K → G′
1 → P0 → M → 0 (2.10)

in Mod S with P0 projective and G′
1 GC-projective. Put M

′ = Im�G′
1 → P0�. Then we

get an exact sequence 0 → A → Gn−1 → · · · → G2 → G′
1 → M → 0 in Mod S. So,

by the induction hypothesis, we get the assertion.

(3) If the exact sequence (2.6) is HomS�−�AddSC� exact, then the middle
rows in the above two commutative diagrams are also HomS�−�AddSC� exact. On
the other hand, we can choose both (2.9) and (2.10) to be HomS�−�AddSC� exact
by Lemma 2.7. Then we get the assertion by the induction hypothesis. �

We denote �2�C�S� = �A ∈ Mod S � there exists a HomS�−�AddSC� exact
exact sequence · · · → G1 → G0 → G0 → G1 → · · · in Mod S with all Gi and Gi in
��C�S� and A 
 Im�G0 → G0��. We denote AddSC = AddSC

⋃
AddSS.

The following result means that an iteration of the procedure used to
define the GC-projective modules yields exactly the GC-projective modules, which
generalizes [14, Theorem A].

Theorem 2.9. �2�C�S� = ��C�S�.

Proof. By [17, Proposition 2.6], we have AddSC ⊆ ��C�S�. So ��C�S� ⊆ �2�C�S�.
In the following, we prove the converse inclusion.

Let

· · · → G1 → G0 → G0 → G1 → · · ·

be a HomS�−�AddSC� exact exact sequence in Mod S with all Gi and Gi in ��C�S�

and A 
 Im�G0 → G0�. Then ExtiS�A�AddSC� = 0 for any i ≥ 1.
Put Ai = Im�Gi → Gi+1� for any i ≥ 0. By Lemma 2.8, there exist exact

sequences

0 → A → C0 → N 0 → 0

and

0 → A0 → N 0 → G → 0

in Mod S with C0 ∈ AddSC and G GC-projective such that the former one is
HomS�−�AddSC� exact. Consider the following pushout diagram:
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10 LIU ET AL.

By [17, Theorem 2.8] and the exactness of the middle row in the above diagram, G′

is GC-projective. Because the first column in the above diagram is HomS�−�AddSC�
exact exact, Ext1S�A

1�AddSC� = 0. It yields that the middle column in the above
diagram is also HomS�−�AddSC� exact exact, and so we get a HomS�−�AddSC�
exact exact sequence

0 → N 0 → G′ → G2 → G3 → · · ·

in Mod S. Then by the above argument, we have HomS�−�AddSC� exact exact
sequences

0 → N 0 → C1 → N 1 → 0

and

0 → N 1 → G′′ → G3 → G4 → · · ·

in Mod S. We proceed in this manner to get a HomS�−�AddSC� exact exact sequence

0 → A → C0 → C1 → · · ·

in Mod S with all Ci ∈ AddSC. Thus A is GC-projective by [17, Proposition 2.2], and
therefore, �2�C�S� ⊆ ��C�S�. The proof is finished. �

By Theorem 2.9, we get immediately the following equivalent characterization
of GC-projective modules. It shows that the GC-projective modules possess the
symmetry just as the Gorenstein projective modules do.

Corollary 2.10. A module M ∈ Mod S is GC-projective if and only if there exists a
HomS�−�AddSC� exact exact sequence

C � · · · → C1 → C0 → C0 → C1 → · · ·

in Mod S with all Ci� C
i ∈ AddSC and M 
 Im�C0 → C0�.
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GORENSTEIN PROJECTIVE DIMENSION 11

3. GC-PROJECTIVE DIMENSION OF MODULES

The notion of GC-projective dimension of modules was introduced by White
in [17] for commutative rings. Here we give its noncommutative version.

Definition 3.1 ([17]). For a module M ∈ Mod S, the GC-projective dimension of
M , denoted by GC-pdSM , is defined as inf�n � there exists an exact sequence 0 →
Gn → · · · → G1 → G0 → M → 0 in Mod S with all Gi GC-projective�. We have
GC-pdSM ≥ 0, and we set GC-pdSM infinity if no such integer exists. Dually, the
GC-injective dimension of M is defined.

In this section, we investigate the properties of GC-projective dimension of
modules. We begin with the following standard result.

Lemma 3.2. Let 0 → L → M → N → 0 be an exact sequence in Mod S.

(1) GC-pdSN ≤ max�GC-pdSM , GC-pdSL+ 1�, and the equality holds true if GC-
pdSM �= GC-pdSL.

(2) GC-pdSL ≤ max�GC-pdSM , GC-pdSN − 1�, and the equality holds true if GC-
pdSM �= GC-pdSN .

(3) GC-pdSM ≤ max�GC-pdSL, GC-pdSN�, and the equality holds true if GC-pdSN �=
GC-pdSL+ 1.

Proof. It is easy to get the assertions by [17, Propositions 2.12 and 2.14]. �

The following result is a GC-projective version of the corresponding result
about projective dimension of modules, which extends [17, Proposition 2.10].

Proposition 3.3. Let 0 → L → M → N → 0 be an exact sequence in Mod S.

(1) If L �= 0 and N is GC-projective, then GC-pdSL = GC-pdSM .
(2) Assume that GC-pdSM = n�≥ 0�. If GC-pdSL ≥ n or GC-pdSN ≥ n+ 1, then GC-

pdSL = GC-pdSN − 1.

Proof. (1) By Lemma 3.2(3).

(2) By [17, Proposition 2.14], we may assume that all of GC-pdSL, GC-pdSM ,
and GC-pdSN are finite. Since GC-pdSM = n by assumption, ExtiS�M�AddSC� = 0
for any i ≥ n+ 1 by [17, Proposition 2.12]. Then ExtiS�L� C

′� 
 Exti+1
S �N�C ′� for any

C ′ ∈ AddSC and i ≥ n+ 1. So for any m ≥ n, we have GC-pdSL ≤ m if and only if
GC-pdSN ≤ m+ 1 again by [17, Proposition 2.12]. Now the assertion follows easily.

�

Recall that for a module M ∈ Mod S, the C-projective dimension of M , denoted
by C-dimS M , is defined as inf�n � there exists an exact sequence 0 → Cn → · · · →
C1 → C0 → M → 0 in Mod S with all Ci ∈ AddSC�. We set C-dimS M infinity if no
such integer exists. The following corollary generalizes [4, Lemma 2.17].

Corollary 3.4. Let M ∈ Mod S with GC-pdSM = n. Then there exists an exact
sequence 0 → M → N → G → 0 in Mod S with C-dimS N = n and G GC-projective.
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12 LIU ET AL.

Proof. Let M ∈ Mod S with GC-pdSM = n. Then we use Lemma 2.8(1) with A = 0
to get an exact sequence 0 → M → N → G → 0 in Mod S with C-dimS N ≤ n and
G GC-projective. By Proposition 3.3(1), GC-pdSN = n, and thus C-dimS N = n. �

We give a criterion for computing the GC-projective dimension of modules as
follows. It generalizes [10, Theorem 2.20] and [5, Theorem 3.1].

Proposition 3.5 (cf. [17, Theorem 3.6]). The following statements are equivalent for
any M ∈ Mod S and n ≥ 0.

(1) GC-pdSM ≤ n.
(2) For every non-negative integer t such that 0 ≤ t ≤ n, there exists an exact sequence

0 → Xn → · · · → X1 → X0 → M → 0 in Mod S such that Xt is GC-projective and
Xi ∈ AddSC for i �= t.

Proof. �2� ⇒ �1� It is trivial.
�1� ⇒ �2� We proceed by induction on n. Suppose GC-pdSM ≤ 1. Then there

exists an exact sequence 0 → G1 → G0 → M → 0 in Mod S with G0 and G1 GC-
projective. By Lemma 2.7 with A = 0, we get the exact sequences 0 → C1 → G′

0 →
M → 0 and 0 → G′

1 → P0 → M → 0 in Mod S with C1 ∈ AddSC, P0 projective, and
G′

0�G
′
1 GC-projective.
Now supposeGC-pdSM = n ≥ 2. Then there exists an exact sequence 0 → Gn →

· · · → G1 → G0 → M → 0 in Mod S with all Gi GC-projective for any 0 ≤ i ≤ n. Set
A = Coker�G3 → G2�. By applying Lemma 2.7 to the exact sequence 0 → A → G1 →
G0 → M → 0, we get an exact sequence 0 → Gn → · · · → G2 → G′

1 → P0 → M → 0
in Mod S with G′

1 GC-projective and P0 projective. Set N = Coker�G2 → G′
1�. Then

we haveGC-pdSN ≤ n− 1. By the induction hypothesis, there exists an exact sequence
0 → Xn → · · · → Xt → · · · → X1 → P0 → M → 0 inMod S such thatP0 is projective
and Xt is GC-projective and Xi ∈ AddSC for i �= t and 1 ≤ t ≤ n.

Now we need only to prove (2) for t = 0. Set B = Coker�G2 → G1�. By the
induction hypothesis, we get an exact sequence 0 → Xn → · · · → X3 → X2 → G′

1 →
B → 0 in Mod S with G′

1 GC-projective and Xi ∈ AddSC for any 2 ≤ i ≤ n. Set
D = Coker�X3 → X2�. Then by applying Lemma 2.7 to the exact sequence 0 →
D → G′

1 → G0 → M → 0, we get an exact sequence 0 → D → C1 → G′
0 → M →

0 in Mod S with C1 ∈ AddSC and G′
0 GC-projective. Thus we obtain the desired

exact sequence 0 → Xn → · · · → X2 → X1 → G′
0 → M → 0 in Mod S with all Xi ∈

AddSC and G′
0 GC-projective. �

Let � a subclass of Mod S. Recall from [6] that a homomorphism f � X → D
in Mod S with X ∈ � is said to be a �-precover of D if for any homomorphism
g � X′ → D in Mod S with X′ ∈ � , there exists a homomorphism h � X′ → X such
that the following diagram commutes:

D
ow

nl
oa

de
d 

by
 [

N
an

jin
g 

U
ni

ve
rs

ity
] 

at
 1

9:
01

 0
4 

Ja
nu

ar
y 

20
13

 



GORENSTEIN PROJECTIVE DIMENSION 13

Dually, the notion of a �-preenvelope is defined. Recall from [12] that a
semidualizing bimodule SCR is called faithfully semidualizing if it satisfies the
following conditions for all modules SN and MR:

(1) If HomS�C�N� = 0, then N = 0;
(2) If HomRop�C�M� = 0, then M = 0.

Also recall that a ring is called n-Gorenstein if it is a left and right Noetherian
ring with left and right self-injective dimensions. We denote ��S�< = �L ∈ Mod S �
idSL < �.

Theorem 3.6. Let SCR be a faithfully semidualizing bimodule and n ≥ 0.

(1) If S is n-Gorenstein, then idSC ≤ n if and only if GC-pdSM ≤ n for any M ∈
Mod S.

(2) If R is n-Gorenstein, then idRopC ≤ n if and only if GC-pdRopN ≤ n for any N ∈
ModRop.

Proof. (1) We first prove the necessity. Let M ∈ Mod S and

0 → G → Pn−1 → · · · → P1 → P0 → M → 0

be an exact sequence in Mod S with all Pi projective. It suffices to show that G is
GC-projective.

Since idSC ≤ n by assumption, idSC
′ ≤ n for any C ′ ∈ AddSC. So

ExtiS�G�AddSC� 
 Extn+i
S �M�AddSC� = 0 for any i ≥ 1. By [8, Lemma 10.2.13],

G has a monic ��S�<-preenvelope 
 � G � L. Let � � P0
� HomS�C� L�

be a projective precover of HomS�C� L� in ModR. Let � be the composite
homomorphism

C ⊗R P0 1C⊗
−→ C ⊗R HomS�C� L�
	L−→ L

with 1C ⊗ 
 epic, where 	L is the natural evaluation homomorphism. Since L ∈
�C�S� by [12, Corollary 6.2], 	L is an isomorphism, and � is epic. Put C0 = C ⊗R P0.
By an argument similar to that in the proof of [12, Proposition 5.3], we have that
� � C0

� L is a �C�S�-precover of L. Notice that Ker � ∈ ��S�<, so idSKer � ≤ n

by [13, Theorem 2], and hence HomS�G�C0�
HomS�G���−→ HomS�G� L� → 0 is exact. It

implies that there exists a homomorphism  � G → C0 in Mod S such that 
 = �
and  is monic.

Let f � G → C ′ be a homomorphism in Mod S with C ′ ∈ AddSC. Notice that
C ′ ∈ ��S�<, so there exists a homomorphism g � L → C ′ such that f = g
, and
hence f = �g��. It implies that  � G → C0 is a monic AddSC-preenvelope of G.
Then ExtiS�C

0/G�AddSC� = 0 for any i ≥ 1. Since C0/G has a monic ��S�<-
preenvelope, and so by the above argument it also has a monic AddSC-preenvelope.
We proceed in this manner to get a HomS�−�AddSC� exact exact sequence

0 → G → C0 → C1 → · · ·
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14 LIU ET AL.

in Mod S with all Ci ∈ AddSC. It follows from [17, Proposition 2.2] that G is GC-
projective.

Conversely, let M ∈ Mod S and 0 → G → Pn−1 → · · · → P1 → P0 → M → 0
be an exact sequence in Mod S with all Pi projective. Then G is GC-projective
by assumption. So Extn+i

S �M�C� 
 ExtiS�G�C� = 0 for any i ≥ 1. It implies that
idSC ≤ n.

(2) It is similar to (1). �

4. THE FOXBY EQUIVALENCE

In this section, SCR is a faithfully semidualizing bimodule. We will study the
Foxby equivalence between the subclasses of the Auslander class �C�R� and that of
the Bass class �C�S�.

Lemma 4.1.

(1) If M ∈ �C�R�, then M is GC-injective if and only if C ⊗R M is Gorenstein injective.
(2) If M ∈ �C�S�, then M is GC-projective if and only if HomS�C�M� is Gorenstein

projective.

Proof. (1) It was proved by Holm and Jørgensen in [11] for commutative rings,
see Step 1 in the proof of [11, Theorem 4.2]. The argument there remains valid in
our setting.

(2) It is dual to (1). �

Lemma 4.2 ([12, Proposition 4.1]). There are equivalences of categories

The following result shows that the class of Gorenstein projective (resp., GC-
injective) left R-modules in the Auslander class �C�R� and the class of GC-projective
(resp., Gorenstein injective) left S-modules in the Bass class �C�S� are equivalent
under Foxby equivalence.

Proposition 4.3. There are equivalences of categories

Proof. It suffices to prove the first assertion. Dually, we get the second one.
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GORENSTEIN PROJECTIVE DIMENSION 15

By Lemmas 4.1(2) and 4.2, we have that the functor HomS�C�−� maps
��C�S� ∩�C�S� to ���R� ∩ �C�R�. Next we show that the functor C ⊗R − maps
���R� ∩ �C�R� to ��C�S� ∩�C�S�.

Let M ∈ ���R� ∩ �C�R�. Then there exists a HomR�−�AddRR� exact exact
sequence

· · · f2−→ P1

f1−→ P0

f0−→ P0 f 1−→ P1 f 2−→ · · · (4.1)

in ModR with all Pi� Pi projective and M 
 Im f0. By [12, Lemma 4.1 and
Corollary 6.3], every kernel and cokernel in (4.1) are in �C�R�. Then, applying the
functor C ⊗R − to (4.1), we get an exact sequence

· · · 1C⊗f2−→ C ⊗R P1

1C⊗f1−→ C ⊗R P0

1C⊗f0−→ C ⊗R P0 1C⊗f 1−→ C ⊗R P1 1C⊗f 2−→ · · · (4.2)

in Mod S. By [12, Theorem 6.4], we have

Ext1S�C ⊗R Im fi� C ⊗R P� 
 Ext1R�Im fi� P� = 0� and

Ext1S�C ⊗R Im f i� C ⊗R P� 
 Ext1R�Im f i� P� = 0

for any projective left R-module P and i ≥ 0. So (4.2) is a HomS�−�AddSC�
exact exact sequence, and hence C ⊗R M ∈ ��C�S� ∩�C�S� by Lemma 4.2 and
Corollary 2.10.

Finally, if M ∈ ���R� ∩ �C�R� and N ∈ ��C�S� ∩�C�S�, then there exist
natural isomorphisms M 
 HomS�C� C ⊗R M� and N 
 C ⊗R HomS�C�N�. The
proof is finished. �

For any n ≥ 0, set

���R�≤n = the class of left R-modules with Gorenstein projective

dimension at most n�

���S�≤n = the class of left S-modules with Gorenstein

injective dimension at most n�

��C�S�≤n = the class of left S-modules with GC-projective dimension at most n�

��C�R�≤n = the class of left R-modules with GC-injective dimension at most n�

As a consequence of Proposition 4.3, we get the following result. The
commutative version of this result was proved in [15, Remark 2.11].

Theorem 4.4. For any n ≥ 0, there are equivalences of categories
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16 LIU ET AL.

Proof. It suffices to prove the first assertion. Dually, we get the second one.
Let M ∈ ���R�≤n ∩ �C�R�. If n = 0, then C ⊗R M ∈ ��C�S� ∩�C�S� by

Proposition 4.3. Now suppose n ≥ 1. Then by Proposition 3.5 with C = R, there
exists an exact sequence

0 → Pn → · · · → P2 → P1 → G0 → M → 0 (4.3)

in ModR with G0 Gorenstein projective and Pi projective for any 1 ≤ i ≤ n. By [12,
Corollaries 6.2 and 6.3], every term and every cokernel in (4.3) are in �C�R�. So we
get an exact sequence

0 → C ⊗R Pn → · · ·C ⊗R P2 → C ⊗R P1 → C ⊗R G0 → C ⊗R M → 0

in Mod S with C ⊗R G0 and all C ⊗R Pi in ��C�S� ∩�C�S� by Proposition 4.3. Thus
C ⊗R M ∈ ��C�S�≤n ∩�C�S�.

Conversely, let M ∈ ��C�S�≤n ∩�C�S�. If n = 0, then HomS�C�M� ∈ ���R� ∩
�C�R� by Proposition 4.3. Now suppose n ≥ 1. Then by [17, Theorem 3.6], there
exists an exact sequence

0 → Cn → Cn−1 → · · · → C1 → G0 → M → 0 (4.4)

in Mod S with Ci ∈ AddSC for any 1 ≤ i ≤ n and G0 GC-projective. By [12,
Corollaries 6.1 and 6.3], every term and every cokernel in (4.4) are in �C�S�. So,
applying the functor HomS�C�−� to (4.4), we get an exact sequence

0 → HomS�C� Cn� → · · · → HomS�C� C1� → HomS�C�G0� → HomS�C�M� → 0

in ModR with HomS�C�G0� and all HomS�C� Ci� in ���R� ∩ �C�R� by
Proposition 4.3. Thus M ∈ ���R�≤n ∩ �C�R�. �

For any n ≥ 0, we denote by ��R�≤n (resp., ��S�≤n) the class of left R-modules
(resp., left S-modules) with projective dimension (resp., injective dimension) at
most n and by �C�S�≤n (resp., �C�R�≤n� the class of left S-modules (resp. left
R-modules) with C-projective dimension (resp., C-injective dimension) at most n.
The commutative version of the following result was proved in [16, Theorem 2.12].

Proposition 4.5. For any n ≥ 0, there are equivalences of categories

D
ow

nl
oa

de
d 

by
 [

N
an

jin
g 

U
ni

ve
rs

ity
] 

at
 1

9:
01

 0
4 

Ja
nu

ar
y 

20
13

 



GORENSTEIN PROJECTIVE DIMENSION 17

Proof. Let n ≥ 0. We have that ��R�≤n ⊆ �C�R� and ��S�≤n ⊆ �C�S� by [12,
Corollary 6.2]. On the other hand, �C�S�≤n ⊆ �C�S� and �C�R�≤n ⊆ �C�R� by [12,
Corollary 6.1]. Then the assertions follow easily. �

Putting the results in this section together, we get the following theorem.

Theorem 4.6 (Foxby Equivalence). For any n ≥ 0, there are equivalences of
categories:
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